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Recent work (1, 2) has detailed the preparation of conical and

hemispherical Pt-Ir ultramicroelectrodes using a two-step procedure involving an

electrochemical etch and the sealing of the resulting sharp wire tip by translation

through molten glass. The ultramicroelectrodes were characterized by scanning

electron microscopy (SEM) and electrochemically (1, 2). In this work, the same

experimental procedure is extended to the fabrication of Pt ultramicroelectrodes. A

new method is described for the characterization of the tip geometry, the

electrochemical response of Pt ultramicroelectrodes to Ru(NH3 )62+/ 3 + in water and

to FeCp20/+ and Co(CpCOOCH 3)2
0/+ in acetonitrile is reported, and aspects related to

ultramicroelectrode reliability are addressed.

SEM micrographs of freshly etched Pt and Pt-Ir wires are shown in Fig.

1, and the method for characterizing the tip geometry is outlined in Fig. 2. Based on

this method, freshly etched Pt and Pt-Ir wires have hemispherical radii at their apex

of respectively 0.36 ± 0.20 and 0.57 ± 0.24 im (95% confidence limits). The wires

appeared smooth under the highest magnification available by SEM (40,000x),

indicating that the NaOH/KCN etch employed (1, 2) effectively electropolishes the

electrode surface as it etches material away (3). The early stages of the necking

mechanism leading to the formation of the sharp tip can be seen in Fig. 3. The

values obtained by the method in Fig. 2 confirm earlier estimates (1, 2) and are

similar to those obtained by alternate methods of Pt ultramicroelectrode fabrication

relying on Wollaston wire (4, 5), the pulling of annealed Pt wire (6), or molten salt

etches (7). The advantage of the procedure employed here is that it can lead to the

formation of ultramicroelectrodes with hemispherical and conical tip geometries,
0

which tends to simplify the description of mass transport processes to the electrode El

surface (2). 
...............

Table I shows the limiting currents, half-wave potentials, and apparent

electrochemical radii obtained from steady-state voltammograi for the reduction odes

t Special



of Ru(NH 3 )6 3+ at Pt ultramicroelectrodes of various sizes. The apparent electrode

radii rapp were determined from the voltammetric limiting current il and the

relation rapp =il/2nrnFCD (8). The sigmoidal shape of the voltammograms and the

resulting limiting currents remained unchanged at the two scan rates employed, 10

and 100 mV s- 1 . Table II in turn shows the response of a significantly larger

ultramicroelectrode to FeCp20 /+ and Co(CpCOOCH 3)20/+ in acetonitrile (9). In this

case noticeable cathodic and anodic current peaks resulting from mass-transport

limitations to the electrode surface appeared as the scan rate was increased (2).

These waves reflect contributions from linear diffusion processes arising from the

exposed conical portion of the electrode tip (see Fig. 1).

Tables I and II show that it is possible to fabricate Pt

ultramicroelectrodes by the two-step etch-coat method employed (1, 2) with apparent

electrochemical radii in the range from 20 to less than 0.1 gm. The measurement of

apparent radii smaller than what can be expected from the freshly etched radii

reported above has to be interpreted with caution. Extremely small limiting

currents could be an artifact of the method of ultramicroelectrode fabrication

resulting from cracks or fissures on an otherwise insulating glass sheath enveloping

the ultramicroelectrode tip (10-12). Ultramicroelectrodes of this type act as Site

Exclusion Electrochemical Detectors (SEEDS) and may well find important uses in

the study of chemical and mass-transport properties in confined spaces; restricted

mass transport may have important ramifications in the understanding of corrosion

rates through cracks or fissures in metals resulting from metal fatigue, stress

fractures, or defective welds, and in the accurate determination of the efficiencies of

batteries and flow-through catalytic systems. Applications as microsampling sensing

devices can also be envisioned. An alternative explanation for the measurement of

electrochemical radii of less than 0.1 gm is that the translation of the freshly etched

ultramicroelectrode tip through hot molten glass during the second step of the two-



step fabrication procedure (1, 2) causes the smooth electropolished surface seen in

Fig. 1 to roughen considerably, leading to the exposure of extremely small surfaces of

bare metal through textured glass. The effect has been observed by SEM (2). The

resulting nanometer-sized electrodes (nanodes) would be considerably smaller than

can be fabricated by alternate methods (4-7), and so would constitute a milestone in

the fabrication of ultramicroelectrodes because they would be small enough to

address fundamental questions in interfacial electrochemistry, for example the

measurement of contributions due to solvent relaxation effects to reorganization

energies (13) and the determination of heterogeneous electron transfer rate

constants, as was recently attempted (14).

It would be desirable to differentiate conclusively between SEEDS and

nanodes by experimental means. The smallest ultramicroelectrodes in this work

were found to be unstable upon drying overnight, as reflected in dramatically

increased voltammetric currents. This limits the use of SEM and TEM, which

require evacuation. The establishment of a tunneling current by STM could be used

in principle to establish that nanometer-sized patches of metal are indeed exposed,

but this approach relies on the exposed metal, as opposed to surrounding glass,

being oriented closest to the surface being used as a probe, which is however not a

necessary condition for the functioning of nanodes. Transient current

measurements in the microsecond time domain have been suggested (11), but an

accurate interpretation of the results would depend on the ultramicroelectrode

geometry assumed in the calculation, which is not known. Finally, the

simultaneous measurement of half-wave potentials for two redox couples with

different electron transfer rate constants could also be used to differentiate between

SEEDS and nanodes (15, 16). A measured shift in the half-wave potential of the

slower couple relative to the faster one should continue to increase as the

ultramicroelectrode radius is decreased beyond 0.1 gm.
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Table I. Limiting currents, half-wave potentials, and apparent electrochemical radii
obtained from steady-state voltammograms for the reduction of 2.8 mM
Ru(NH 3 )6Cl3 in 500 mM KCl. rapp = ii/2xrnFDC (8).

Scan rate/mV s-1  E1/2/mV il/nA rapp/9tm

10 -208 14 9.6
100 -208 13 9.5

10 -208 6.1 4.4
100 -205 6.0 4.3

10 -209 3.6 2.6
100 -209 3.7 2.6

10 -209 0.34 0.24
100 -210 0.33 0.23

10 -208 0.093 0.066
100 -210 0.090 0.064



Table II. Limiting currents, half-wave potentials, and apparent electrochemical radii
obtained from steady-state voltammograms for the reduction of 0.48 mM
Co(CpCOOCH 3 )2PF6 and the oxidation of 0.50 mM FeCp2 in 50 mM Bu4NCIO 4 in

acetonitrile. rapp = il/21cnFDC (8).

Co(CpCOOCH 3)2  FeCp2
rate/mV s-1 E1/2/mV il/nA rapp/gm E1/2/mV ij/nA rapp/gm

5 -405 5.6 17 396 13 17
10 -404 5.5 17 395 12 17
20 -403 5.7 17 394 12 17
50 -399 6.1 19 392 13 18
100 -398 6.8 21 390 14 19
500 -398 8.1 25 391 16 22



FIGURE CAPTIONS

Figure 1. SEM micrographs (10,000x magnification) of freshly etched (1, 2) Pt (r =

0.27 gm, left) and Pt-Ir (r = 0.47 pim, right). The radii were determined as outlined in
Fig. 2. Freshly etched Pt and Pt-Ir wires (1, 2) have hemispherical radii at their apex
of respectively 0.36 ± 0.20 and 0.57 ± 0.24 gm (95% confidence limits). These values

confirm earlier estimates (1, 2).

Figure 2. Diagram illustrating the method used for the determination of the
apex radii of freshly etched (1, 2) Pt and Pt-Ir. The radii were obtained by equating
the curvature of the parabola at its apex, Kp = 2a/(1 + b2)3 / 2, to the curvature of the
inscribed circle Kc = 1/r. The parameters a, b and c were determined analytically
from micrographs like those of Fig. 1 and measurements at the positions

represented by the dots.

Figure 3. (Left) SEM micrograph of freshly etched 0.020" wire emersed
immediately before the breakoff transition described in Fig. 1 of reference (1).
(Right) Similar experiment, immediately after breakoff. Note that these
micrographs were obtained at a much lower magnification than those of Fig. 1.



Figure 1
Fabrication and Characterization
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Figure 2
Fabrication and Characterization ...



Figure 3
Fabrication and Characterization
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